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Stochastic resonance in an optical bistable system subjected
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The stochastic resonance (SR) of an optical bistable system with cross-correlated additive white and
multiplicative colored noises and periodic signal is studied using the unified colored noise approximation
and the theory of signal-to-noise ratio (SNR). Results show that cross-correlation intensity λ enforces the
SR of the system. The position of the peak on the SNR-τ curves moves to the right direction along with the
increase of λ (τ is the self-correlation time of the multiplicative colored noise). We find the SR phenomenon
in the SNR-D and SNR-Q curves (D and Q are the intensities of the additive and multiplicative noises,
respectively), but not in the SNR-λ curves.
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Stochastic resonance (SR) has been proposed to explain
the periodic recurrences of ice ages on the Earth[1,2]; as
such, this phenomenon has been extensively studied from
both the theoretical and experimental points of view. In
the last two decades, research on signal processing in non-
linear systems with noise has revealed several interest-
ing phenomena, the most important of which is SR[3].
SR was coined for the rather counterintuitive fact that
the response of a nonlinear system to a periodic signal
may be enhanced through the addition of an optimal
amount of noise[4,5]. In order to describe SR, McNamara
et al. suggested a master equation for populations in
two stable states[6]. They considered the signal-to-noise
ratio (SNR), which was the ratio of the δ peak height
in the power spectrum to the noise background, in de-
termining the SR effect. Zhou et al. suggested escape
time distribution to describe SR[7]. The SR paradigm
has drawn considerable attention in such fields as clima-
tology, chemistry, laser physics, biophysics, physiology,
solid-state physics, and even sociology[8−16]. In 2000, Jia
et al. studied the SR phenomenon in a bistable system
under the simultaneous action of multiplicative and addi-
tive noises using the adiabatic limit method[17]. Luo et al.
studied SR in a bistable system driven by two different
kinds of colored noises and found that there seemed to
be a transition between one peak and two peaks in the
curve of the SNR when either the noise correlation time
or the coupling strength between the additive noise and
the multiplicative noise was increased[18]. In 2007, Cao
et al. studied the SR of periodically driven linear system
with multiplicative white noise and periodically modu-
lated additive white noise[19]. Du et al. investigated the
SR phenomenon of a periodically driven time-delayed lin-
ear system with multiplicative white noise and periodi-
cally modulated additive white noise[20]. In 2008, Burada
et al. presented a novel scheme for the appearance of SR
when the dynamics of a Brownian particle took place in a
confined medium[21]. Wu et al. studied coupled bistable
oscillators with different sources of diversity, and found

that the resonance was reduced, and even disappeared, as
the correlation length between the diversity increased[22].
Applying the method of unified colored noise approxi-
mation, Zhao et al. investigated the phenomenon of
entropic SR in a two-dimensional confined system driven
by a transverse periodic force when colored fluctuation
was included in the system[23].

Recently, optical bistability has attracted a great
amount of interest and has given rise to numerous ex-
perimental and theoretical studies[24−26]. In optical sys-
tems, SR has also attracted wide interest. McNamara et
al. first observed that the output SNR of a ring laser ex-
hibited a maximum level versus the input noise intensity
(i.e., SR). In this letter, the SR phenomenon in an optical
bistable system with coupling between the additive white
noise and multiplicative colored noise is investigated.

A model for purely absorptive optical bistability in an
optical cavity has been introduced by Bonifacio et al.[27]
for the input light amplitude y and the transmitted am-
plitude x, they derived the equation of motion for the
dimensionless variables as

dx

dt
= y − x − 2cx

1 + x2
= −dU(x)

dt
, (1)

with the potential U(x) = −
∫

(y − x − 2cx
1+x2 )dx. In this

equation, c is proportional to the inversion of the pop-
ulation of the atomic levels. For a large value of c, the
input-output characteristics show the bistability. The po-
tential U(x) has two minima when the system exhibits
optical bistability.

For a large value of c and a chosen input intensity
y = y0 within the regime of bistability, we take into ac-
count the fluctuations of input intensity y and inversion c
and assume that the system is driven by a periodic signal,
A cos ωt. Thus, the dimensionless form of the Langevin
equation for this system can be shown as

dx

dt
= y0−x− 2cx

1 + x2
+A cos ωt+

2x

1 + x2
ξ(t)+η(t), (2)

where ξ(t) and η(t) are the Gaussian noises and are cor-
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related in the following forms:

〈η(t)〉 = 〈ξ(t)〉 = 0, (3)

〈ξ(t)ξ(t′)〉 =
Q

2τ
exp(−|t − t′|

τ
), (4)

〈η(t)η(t′)〉 = Dδ(t − t′), (5)

〈η(t′)ξ(t)〉 = 〈ξ(t′)η(t)〉 = λ
√

QDδ(t − t′), (6)

where Q and D are the intensities of noises ξ(t) and η(t);
τ is the self-correlation time of the multiplicative colored
noise; δ(t − t′) is the Kronecher delta function; λ is the
correlation intensity between the additive and multiplica-
tive noises with |λ| ≤ 1.

According to Eq. (2) and using the unified col-
ored noise approximation[28], the corresponding Fokker-
Planck equation is written as

∂P (x, t)
∂t

= LFPP (x, t), (7)

LFP = − ∂

∂x
F (x, τ) +

∂2

∂x2
G(x, τ). (8)

The drift coefficient F (x, τ) and the diffusion coefficient
G(x, τ) are given by

F (x, τ) =
f(x)

C(x, τ)
+

K ′(x)
C2(x, τ)

− C ′(x, τ)K(x)
C3(x, τ)

, (9)

G(x, τ) =
K(x)

C2(x, τ)
, (10)

and

f(x) = y0 − x − 2cx

1 + x2
+ A cos ωt, (11)

K(x) = Q
4x2

(1 + x2)2
+ 2λ

√
QD

2x

1 + x2
+ D, (12)

C(x, τ) = 1 − τ [f ′(x) − 1 − x2

(1 + x2)x
f(x)]. (13)

We only consider the stationary state, and the steady-
state probability density of Eq. (7) can be obtained as

Pst(x) =N
C(x, τ)√

K(x)
exp

( ∫
f(x)C(x, τ)

K(x)
dx

)
=N

C(x, τ)√
K(x)

exp
(
− Φ(x, τ)

D

)
, (14)

where N is the normalization constant. Here, Φ(x, τ) is
the generalized potential, and

Φ(x, τ) = −D

∫
f(x)C(x, τ)

K(x)
dx. (15)

The mean first passage time T± of the process x(t) to
reach the state x∓ (x∓ represents the two stable states)
with initial condition of x(t = 0) = x± is

T± =
2π√

|V ′′(xu)V ′′(x±1)|
exp[Φ(xu, τ) − Φ(x±, τ)]. (16)

Based on W± = T−1
± , the transition rates W± can be

obtained out of x
[29]
± .

The system is subjected to a time-dependent signal,
A cos ωt, up to the first-order of its amplitude (assumed
to be small), and the transition rates can be expanded
as follows by the two-state model theory:

W+ = W+0 − W+1A cos ωt, (17)

W− = W−0 + W−1A cos ωt. (18)

According to the theory of McNamara et al.[29], the mas-
ter equation governing the evolution of n±(t) is written as

ṅ+ = − ṅ− = W−(t)n− − W+(t)n+

=W−(t) − [W+(t) + W−(t)]n+. (19)

Once Eq. (19) is integrated, the correlation function
and the power spectrum can be calculated[30], and the
expression of SNR is given by

SNR =
A2π(W+0W−1 + W−0W+1)2

4W+0W−0(W+0 + W−0)
, (20)

where

W+0 = W+|A cos(ωt)=0 ,W−0 = W−|A cos(ωt)=0 , (21)

W+1 = − dW+

d(A cos(ωt))

∣∣∣
A cos(ωt)=0

,

W−1 =
dW−

d(A cos(ωt))

∣∣∣
A cos(ωt)=0

. (22)

By using the expression in Eq. (20) of SNR, the effects
of the self-correlation time τ and the cross-correlation
intensity λ on the SNR of the system can be analyzed by
numerical calculation.

In Fig. 1, we present the SNR as a function of the self-
correlation time τ of the multiplicative noise for different
values of cross-correlation intensity λ between the two
types of noises. The existence of a maximum level in the
curves of SNR-τ is the identifying characteristic of the
SR phenomenon. The height of the peak increases ac-
cordingly with the increase in the value of λ. This means
that the increase in the correlation intensity between
noises can cause the SR phenomenon to be prominent.
The position of the peak on the SNR-τ curves also moves
to the right direction along with the increase of λ.

The curves of the SNR with respect to the correlation

Fig. 1. SNR of the system as a function of the self-correlation
time τ with different values of λ. The parameters are chosen
as D = Q = 0.2, ω = 0.004, and A = 0.003.
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Fig. 2. SNR of the system as a function of the cross-
correlation intensity λ with different values of τ . The pa-
rameters are chosen as Q = 0.2, D = 0.4, ω = 0.004, and A =
0.003.

Fig. 3. SNR of the system as a function of the additive noise
intensity D. The parameters are chosen as Q = 0.2, λ = 0.4,
τ = 0.4, ω = 0.004, and A = 0.003.

Fig. 4. SNR of the system as a function of the multiplicative
noise intensity Q. The parameters are chosen as D = 0.2, λ =
0.4, τ = 0.4, ω = 0.004, and A = 0.003.

intensity λ between the two types of noises for different
values of self-correlation time τ of the multiplicative
noise are plotted in Fig. 2. As the figure shows, no SR
phenomenon occurs in the SNR-λ curves. SNR increases
along with increasing λ, whereas it decreases along with
increasing self-correlation time τ .

As shown in Figs. 3 and 4, there is a peak in the
SNR-D and SNR-Q curves, indicating that SR also oc-
curs during the variation of SNR with both the additive
noise intensity D and the multiplicative noise intensity
Q, respectively.

In conclusion, the effects of the self-correlation time
τ , the cross-correlation intensity λ, and the additive and
multiplicative noise intensities D and Q on the SR of
an optical bistable system are investigated. Using the
expression of SNR, we find that λ enforces the SR of the
system. The position of the peak on the SNR-τ curves
moves to the right direction along with the increase of
λ. In addition, the SR phenomenon can be found in the
SNR-D and SNR-Q curves, but not in the SNR-λ curves.

This work was supported by the Open Foundation of
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J. M. Rubi, and P. Häggi, Phys. Rev. Lett. 101, 130602
(2008).

22. D. Wu, S. Zhu, and X. Luo, Phys. Rev. E 79, 051104
(2009).

23. L. Zhao , X. Q. Luo, D. Wu , S. Q. Zhu, and J. H. Gu,
Chin. Phys. Lett. 27, 040503 (2010).

24. L. Zhang, L. Cao, and D. J. Wu, Phys. Rev. A 77,
015801 (2008).

25. L. C. Du and D. C. Mei, Phys. Lett. A 372, 5529 (2008).

26. B. Wang and S. Yan, Chin. Opt. Lett. 7, 838 (2009).

27. R. Bonifacio and L. A. Lugiato, Phys. Rev. A 18, 1129
(1978).

28. P. Jung and P. Hanggi, Phys. Rev. A 35, 4464 (1987).

29. B. McNamara and K. Wiesenfeld, Phys. Rev. A 39,
4854 (1989).

30. H. S. Wio and S. Bouzat, Braz. J. Phys. 29, 136 (1999).


